Edge Rotation and Edge Slide Distance Graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-distance-regular graphs

Edge-distance-regularity is a concept recently introduced by the authors which is similar to that of distance-regularity, but now the graph is seen from each of its edges instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with the same intersection numbers for any edge taken as a root....

متن کامل

note on edge distance-balanced graphs

edge distance-balanced graphs are graphs in which for every edge $e = uv$ the number of edges closer to vertex $u$ than to vertex $v$ is equal to the number of edges closer to $v$ than to $u$. in this paper, we study this property under some graph operations.

متن کامل

n-EDGE-DISTANCE-BALANCED GRAPHS

Throughout this paper, we present a new class of graphs so-called n-edgedistance-balanced graphs inspired by the concept of edge-distance-balanced property initially introduced by Tavakoli et al. [Tavakoli M., Yousefi-Azari H., Ashrafi A.R., Note on edge distance-balanced graphs, Trans. Combin. 1 (1) (2012), 1-6]. Moreover, we propose some characteristic results to recognize 2-edge-distance-bal...

متن کامل

Edge-distance-regular graphs are distance-regular

A graph is edge-distance-regular when it is distance-regular around each of its edges and it has the same intersection numbers for any edge taken as a root. In this paper we give some (combinatorial and algebraic) proofs of the fact that every edge-distance-regular graph Γ is distance-regular and homogeneous. More precisely, Γ is edge-distance-regular if and only if it is bipartite distance-reg...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1997

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(97)00221-6